Table 1 Mean Animal Use¹ for the UDP² Using Starting Doses Based on the 3T3 and NHK NRU Test Methods with Various Regressions – All Chemicals | Assay/Regression | With
Default
Starting
Dose ³ | With NRU-
Based
Starting
Dose ⁴ | Animals
Saved ⁵ | With
Default
Starting
Dose ³ | With NRU-
Based
Starting
Dose ⁵ | Animals
Saved ⁵ | Accuracy ⁶ | |---|--|---|-------------------------------|--|---|-------------------------------|-----------------------| | 3T3 NRU Test Method | Do | se-Response Sloj | e = 2 | Dos | e-Response Slop | e = 8.3 | | | RC millimole ⁶ | 8.62 ± 0.18 | 8.08 ± 0.22 | 0.53 (6.2%) | 7.06 ± 0.21 | 6.52 ± 0.25 | 0.54 (7.7%) | 26% | | RC rat-only weight ⁷ | 9.61± 0.17 | 8.86 ± 0.18 | 0.75* (7.8%) | 8.19 ± 0.19 | 7.49 ± 0.22 | 0.70* (8.6%) | 35% | | RC rat-only weight excluding substances with specific mechanisms of toxicity ⁸ | 9.61 ± 0.17 | 8.91 ± 0.19 | 0.69* (7.2%) | 8.21 ± 0.19 | 7.54 ± 0.24 | 0.67* (8.2%) | 46% | | NHK NRU Test Method | Dos | se-Response Slop | e = 2 | Dos | | | | | RC millimole ⁶ | 8.56 ± 0.18 | 8.15 ± 0.22 | 0.42 (4.9%) | 7.01 ± 0.20 | 6.58 ± 0.25 | 0.43 (6.1%) | 28% | | RC rat-only weight ⁷ | 9.60± 0.17 | 8.94 ± 0.18 | 0.66* (6.9%) | 8.19 ± 0.19 | 7.57 ± 0.23 | 0.62* (7.6%) | 30% | | RC rat-only weight excluding substances with specific mechanisms of toxicity ⁸ | 9.59 ± 0.16 | 8.93 ± 0.20 | 0.66* (6.9%) | 8.20 ± 0.19 | 7.56 ± 0.25 | 0.64* (7.8%) | 38% | ¹Numbers are mean numbers of animals and standard errors for 2000 simulations for each of 70 substances for the 3T3 NRU test method and 71 substances for the NHK NRU test method. No IC₅₀ was obtained for carbon tetrachloride in either assay or for methanol in the 3T3 NRU. Although the simulations used whole animals, averaging the results produced fractional numbers of animals. The slight differences in the number of animals used for the default starting dose at the same dose-response slope reflect different simulation runs. ²OECD (2001a); EPA (2002a). ³Default starting dose = 175 mg/kg. $^{^{4}}$ Starting dose = one default dose lower than the NRU-predicted LD₅₀ calculated using the geometric mean of the laboratory geometric mean NRU IC₅₀ values in the specified regression. ⁵Difference between mean animal use with default starting dose and mean animal use with NRU-based LD₅₀. Differences denoted by * were statistically significant (i.e., p < 0.05) by a one-sided Wilcoxon signed rank test. Percentage difference is shown in parentheses. ⁶Proportion of substances for which the GHS acute oral toxicity category (UN 2005) predicted by the *in vitro* NRU test methods matched the *in vivo* category (from **Tables 6-4** to **6-6**). $^{^{7}\}log LD_{50} \text{ (mmol/kg)} = 0.435 \log IC_{50} \text{ (mM)} + 0.625.$ $^{^{8}}$ log LD₅₀ (mg/kg) = 0.372 log IC₅₀ (µg/mL) + 2.024. $^{^{9}}$ log LD₅₀ (mg/kg) = 0.357 log IC₅₀ (μ g/mL) + 2.194. Table 2 Animal Use¹ for the UDP² by GHS Toxicity Category³ Using Starting Doses Based on the 3T3 and NHK NRU Test Methods with the RC Millimole Regression⁴ – All Chemicals | | | Do | se-Response Slo | pe = 2 | Dose | | | | |---|--------------------------------------|---|---|-------------------------------|---|---|-------------------------------|-----------------------| | Toxicity Category ³ | Number of
Reference
Substances | With Default
Starting
Dose ⁵ | With NRU-
Based
Starting
Dose ⁶ | Animals
Saved ⁷ | With Default
Starting
Dose ⁵ | With NRU-
Based
Starting
Dose ⁶ | Animals
Saved ⁷ | Accuracy ⁸ | | | | | | 3T3 NRU T | est Method | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 12 | 10.67 ± 0.24 | 9.62 ± 0.37 | 1.05* (9.9%) | 9.42 ± 0.20 | 8.64 ±0.34 | 0.78 (8.3%) | 0% | | $5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 8.98 ± 0.34 | 8.85 ± 0.50 | 0.13 (1.5%) | 7.63 ± 0.31 | 7.46 ± 0.37 | 0.17 (2.2%) | 17% | | $50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 7.78 ± 0.11 | 8.33 ± 0.24 | -0.55 (-7.0%) | 6.67 ± 0.23 | 6.97 ± 0.25 | -0.30 (-4.5%) | 67% | | $300 < LD_{50} \le 2000 \text{ mg/kg}$ | 12 | 9.05 ± 0.22 | 8.84 ± 0.16 | 0.21 (2.3%) | 7.77 ± 0.27 | 7.55 ± 0.24 | 0.22 (2.8%) | 100% | | $2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 8.66 ± 0.28 | 7.37 ± 0.40 | 1.29* (14.9%) | 5.64 ± 0.40 | 4.32 ± 0.56 | 1.32* (23.4%) | 0% | | $LD_{50} > 5000 \text{ mg/kg}$ | 11 | 6.47 ± 0.32 | 5.23 ± 0.47 | 1.24* (19.2%) | 5.02 ± 0.02 | 3.81 ± 0.31 | 1.21* (24.1%) | 10% | | | | | | NHK NRU T | Test Method | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 12 | 10.51 ± 0.24 | 10.23 ± 0.35 | 0.27 (2.6%) | 9.39 ± 0.20 | 9.11 ± 0.35 | 0.28 (2.9%) | 0 | | $5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 9.06 ± 0.34 | 8.76 ± 0.47 | 0.30 (3.3%) | 7.63 ± 0.30 | 7.37 ± 0.33 | 0.25 (3.3%) | 50% | | $50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 7.80 ± 0.12 | 8.19 ± 0.25 | -0.39 (-5.0%) | 6.61 ± 0.22 | 6.87 ± 0.23 | -0.26 (-4.0%) | 50% | | $300 < LD_{50} \le 2000 \text{ mg/kg}$ | 12 | 9.04 ± 0.22 | 8.73 ± 0.15 | 0.32 (3.5%) | 7.73 ± 0.27 | 7.47 ± 0.23 | 0.26 (3.4%) | 100% | | $2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 8.65 ± 0.29 | 7.55 ± 0.34 | 1.11* (12.8%) | 5.64 ± 0.40 | 4.51 ± 0.46 | 1.13* (20.0%) | 9% | | LD ₅₀ > 5000 mg/kg | 12 | 6.42 ± 0.29 | 5.41 ± 0.48 | 1.01* (15.7%) | 5.02 ± 0.02 | 3.99 ± 0.29 | 1.02* (20.4%) | 0% | Numbers are mean numbers of animals used and standard errors for 2000 simulations for each substance with a limit dose of 5000 mg/kg. Although the simulations used whole animals, averaging the results produced fractional numbers of animals. Results are provided for 70 substances in the 3T3 NRU test method and 71 substances in the NHK NRU test method categorized using the initial LD₅₀ values from **Table 3-2**. No IC₅₀ was obtained for carbon tetrachloride in either assay or for methanol in the 3T3 NRU. The slight differences in the number of animals used for the default starting dose at the same dose-response slope reflect different simulation runs. ²OECD (2001a); EPA (2002a). ³GHS-Globally Harmonized System of Classification and Labelling of Chemicals with LD₅₀ in mg/kg (UN 2005). $^{{}^{4}}$ RC millimole regression is log LD₅₀ (mmol/kg) = 0.435 log IC₅₀ (mM) + 0.625. ⁵Default starting dose = 175 mg/kg. ⁶Starting dose was one default dose lower than the predicted LD₅₀ calculated using the geometric mean of the laboratory geometric mean NRU IC₅₀ values in the RC millimole regression. ⁷Difference between mean animal use with default starting dose and mean animal use with NRU predicted LD₅₀. Differences marked by * are statistically significant (p < 0.05) by a one-sided Wilcoxon signed rank test. Percentage difference shown in parentheses ⁸Proportion of substances for which the GHS acute oral toxicity category (UN 2005) predicted by the *in vitro* NRU test methods matched the *in vivo* category (from **Table 6-4**). Table 3 Animal Use¹ for the UDP² by GHS Toxicity Category³ Using Starting Doses Based on the NRU Test Methods with the RC Rat-Only Weight Regression⁴-All Chemicals | | | Dos | Dose-Response Slope = 2 | | | Dose-Response Slope = 8.3 | | | | |---|--------------------------------------|--|--|-------------------------------|---|-------------------------------------|-------------------------------|-----------------------|--| | Toxicity Category ³ | Number of
Reference
Substances | With
Default
Starting
Dose ⁵ | With NRU-
Based
Starting
Dose | Animals
Saved ⁷ | With Default
Starting
Dose ⁵ | With NRU-
Based
Starting Dose | Animals
Saved ⁷ | Accuracy ⁸ | | | | | | | 3T3 NRU | Test Method | | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 7 | 11.50 ± 0.15 | 11.18 ± 0.38 | 0.32 (2.8%) | 10.37 ± 0.29 | 10.11 ± 0.41 | 0.27 (2.6%) | 0% | | | $> 5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 9.51 ± 0.21 | 9.01 ± 0.34 | 0.50 (5.3%) | 8.55 ± 0.23 | 8.02 ± 0.34 | 0.52 (6.1%) | 17% | | | $> 50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 7.73 ± 0.12 | 7.99 ± 0.21 | -0.26 (-3.4%) | 6.83 ± 0.21 | 7.04 ± 0.27 | -0.22 (-3.2%) | 67% | | | $> 300 < LD_{50} \le 2000 \text{ mg/kg}$ | 16 | 8.74 ± 0.25 | 7.97 ± 0.10 | 0.77* (8.8%) | 7.61 ± 0.30 | 7.00 ± 0.21 | 0.61 (8.0%) | 100% | | | $> 2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 10.79 ± 0.08 | 8.97 ± 0.29 | 1.82* (16.8%) | 9.17 ± 0.25 | 7.47 ± 0.42 | 1.69* (18.5%) | 0% | | | > 5000 mg/kg | 12 | 9.72 ± 0.28 | 8.17 ± 0.44 | 1.55* (16.0%) | 6.82 ± 0.36 | 5.26 ± 0.51 | 1.56* (22.9%) | 10% | | | | | | | NHK NRU | Test Method | | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 7 | 11.40 ± 0.18 | 11.66 ± 0.25 | -0.25 (-2.2%) | 10.34 ± 0.30 | 10.58 ± 0.32 | -0.24 (-2.3%) | 0 | | | $> 5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 9.68 ± 0.21 | 8.55 ± 0.28 | 1.13* (11.7%) | 8.59 ± 0.23 | 7.68 ± 0.27 | 0.92* (10.7%) | 50% | | | $> 50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 7.80 ± 0.12 | 8.13 ± 0.17 | -0.32 (-4.1%) | 6.96 ± 0.22 | 7.24 ± 0.28 | -0.28 (-4.1%) | 50% | | | $> 300 < LD_{50} \le 2000 \text{ mg/kg}$ | 16 | 8.75 ± 0.25 | 8.01 ± 0.11 | 0.75* (8.5%) | 7.61 ± 0.30 | 6.98 ± 0.21 | 0.63 (8.3%) | 100% | | | $> 2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 10.73 ± 0.07 | 9.12 ± 0.22 | 1.60*(14.9%) | 9.17 ± 0.26 | 7.65 ± 0.37 | 1.52* (16.6%) | 9% | | | $LD_{50} > 5000 \text{ mg/kg}$ | 13 | 9.56 ± 0.28 | 8.25 ± 0.42 | 1.31*(13.7%) | 6.76 ± 0.34 | 5.37 ± 0.47 | 1.39* (20.6%) | 0% | | ¹Numbers are mean number of animals used and standard errors for 2000 simulations for each substance with a limit dose of 5000 mg/kg. Although the simulations used whole animals, averaging the results produced fractional numbers of animals. Results are provided for 70 substances in the 3T3 NRU test method and 71 substances in the NHK NRU test method categorized using the reference LD₅₀ values from **Table 4-2**. No IC₅₀ was obtained for carbon tetrachloride in either assay or for methanol in the 3T3 NRU. The slight differences in the number of animals used for the default starting dose at the same dose-response slope reflect different simulation runs. ²OECD (2001a); EPA (2002a). ³GHS-Globally Harmonized System of Classification and Labelling of Chemicals with LD₅₀ in mg/kg (UN 2005). ⁴From **Table 6-2**; $\log LD_{50}$ (mg/kg) = 0.372 $\log IC_{50}$ (µg/mL) + 2.024 ⁵Default starting dose = 175 mg/kg. $^{^6}$ Starting dose was one default dose lower than NRU-predicted LD₅₀ calculated using the geometric mean of the laboratory geometric mean NRU IC₅₀ values in the RC rat-only regression. ⁷Difference between mean animal use with default starting dose and mean animal use with NRU predicted LD₅₀. Differences marked by * were statistically significant (i.e., p < 0.05) by a one-sided Wilcoxon signed rank test. Percent difference is shown in parentheses. ⁸Proportion of substances for which the GHS acute oral toxicity category (UN 2005) predicted by the *in vitro* NRU test methods matched the *in vivo* category (from **Table 6-5**). Table 4 Animal Use¹ for the UDP² By GHS Toxicity Category³ Using Starting Doses Based on the 3T3 and NHK NRU Test Methods with the RC Rat-Only Weight Regression Excluding Substances with Specific Mechanisms of Toxicity⁴-All Chemicals | | | Dos | se-Response Sloj | pe = 2 | Dos | e-Response Slope | = 8.3 | | |---|--------------------------------------|--|--|-------------------------------|---|-------------------------------------|-------------------------------|-----------------------| | Toxicity Category ³ | Number of
Reference
Substances | With
Default
Starting
Dose ⁵ | With NRU-
Based
Starting
Dose | Animals
Saved ⁷ | With Default
Starting
Dose ⁵ | With NRU-
Based
Starting Dose | Animals
Saved ⁷ | Accuracy ⁸ | | | | | | 3T3 NRU | Test Method | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 7 | 11.41 ± 0.16 | 11.58 ± 0.35 | -0.16 (-1.4%) | 10.33 ± 0.29 | 10.52 ± 0.39 | -0.19 (-1.9%) | 0% | | $> 5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 9.42 ± 0.20 | 9.29 ± 0.35 | 0.13 (1.3%) | 8.51 ± 0.23 | 8.25 ± 0.34 | 0.26 (3.1%) | 14% | | $> 50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 7.78 ± 0.10 | 8.27 ± 0.21 | -0.49* (-6.3%) | 6.94 ± 0.19 | 7.33 ± 0.25 | -0.39 (-5.6%) | 80% | | $> 300 < LD_{50} \le 2000 \text{ mg/kg}$ | 16 | 8.79 ± 0.26 | 7.86 ± 0.08 | 0.93* (10.6%) | 7.62 ± 0.30 | 6.88 ± 0.18 | 0.74 (9.7%) | 78% | | $> 2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 10.83 ± 0.07 | 8.67 ± 0.24 | 2.16* (19.9%) | 9.17 ± 0.25 | 7.18 ± 0.37 | 1.99* (21.7%) | 67% | | > 5000 mg/kg | 12 | 9.73 ± 0.28 | 7.93 ± 0.44 | 1.80* (18.5)% | 6.82 ± 0.36 | 4.99 ± 0.52 | 1.83* (26.9%) | 25% | | | | | | NHK NRU | Test Method | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 7 | 11.34 ± 0.19 | 11.95 ± 0.19 | -0.61* (-5.4%) | 10.33 ± 0.30 | 10.88 ± 0.26 | -0.55* (-5.4%) | 0 | | $> 5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 9.60 ± 0.21 | 8.77 ± 0.32 | 0.83* (8.6%) | 8.55 ± 0.23 | 7.85 ± 0.31 | 0.70 (8.2%) | 14% | | $> 50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 7.81 ± 0.11 | 8.37 ± 0.23 | -0.56* (-7.2%) | 7.03 ± 0.21 | 7.48 ± 0.29 | -0.45 (-6.4%) | 60% | | $> 300 < LD_{50} \le 2000 \text{ mg/kg}$ | 16 | 8.80 ± 0.26 | 7.81 ± 0.09 | 0.99* (11.3%) | 7.63 ± 0.31 | 6.79 ± 0.19 | 0.84* (11.0%) | 89% | | $> 2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 10.76 ± 0.07 | 8.87 ± 0.25 | 1.89* (17.6%) | 9.18 ± 0.26 | 7.41 ± 0.39 | 1.78* (19.4%) | 44% | | LD ₅₀ > 5000 mg/kg | 13 | 9.56 ± 0.28 | 7.93 ± 0.45 | 1.62* (17.0%) | 6.76 ± 0.34 | 5.05 ± 0.50 | 1.70* (25.2%) | 15% | ^TNumbers are mean number of animals used and standard errors for 2000 simulations for each substance with a limit dose of 5000 mg/kg. Although the simulations used whole animals, averaging the results produced fractional numbers of animals. Results are provided for 70 substances in the 3T3 NRU test method and 71 substances in the NHK NRU test method categorized using the reference LD₅₀ values from **Table 4-2**. No IC₅₀ was obtained for carbon tetrachloride in either assay or for methanol in the 3T3 NRU. The slight differences in the number of animals used for the default starting dose at the same dose-response slope reflect different simulation runs. ²OECD (2001a); EPA (2002a). ³GHS-Globally Harmonized System of Classification and Labelling of Chemicals with LD₅₀ in mg/kg (UN 2005). ⁴From **Table 6-2**; $\log LD_{50}$ (mg/kg) = 0.357 $\log IC_{50}$ (μ g/mL) + 2.194. ⁵Default starting dose = 175 mg/kg. $^{^6}$ Starting dose = One default dose lower than NRU-predicted LD₅₀ calculated using the geometric mean of laboratory mean IC₅₀ values in the RC rat-only weight regression excluding substances with specific mechanisms of toxicity. Table 5 Animal Use¹ for the ATC² Using Starting Doses Based on NRU Test Methods with Various Regressions –All Chemicals | Assay/Regression | With
Default
Starting
Dose ³ | With NRU-
Based
Starting
Dose ⁴ | Animals
Saved ⁵ | With Default
Starting
Dose ³ | With NRU-
Based
Starting
Dose ⁵ | Animals
Saved ⁵ | Accuracy ⁶ | |---|--|---|-------------------------------|---|---|-------------------------------|-----------------------| | 3T3 NRU Test Method | Dos | e-Response Slop | e = 2 | Dose | -Response Slop | e = 8.3 | | | RC millimole ⁷ | 10.79 ± 0.12 | 9.93 ± 0.24 | 0.86* (8.0%) | 10.57 ± 0.17 | 9.73 ± 0.26 | 0.85* (8.0%) | 26% | | RC rat-only weight ⁸ | 10.79 ± 0.12 | 9.53 ± 0.23 | 1.26* (11.7%) | 10.57 ± 0.17 | 9.17 ± 0.26 | 1.40* (13.3%) | 35% | | RC rat-only weight excluding substances with specific mechanisms of toxicity ⁹ | 10.79 ± 0.12 | 9.46 ± 0.22 | 1.33* (12.3%) | 10.57 ± 0.17 | 9.01 ± 0.24 | 1.56* (14.8%) | 46% | | NHK NRU Test Method | Dos | e-Response Slop | e = 2 | Dose | | | | | RC millimole ⁷ | 10.82 ± 0.12 | 9.85 ± 0.24 | 0.97* (8.9%) | 10.60 ± 0.17 | 9.62 ± 0.26 | 0.98* (9.2%) | 28% | | RC rat-only weight ⁸ | 10.82 ± 0.12 | 9.67 ± 0.23 | 1.14* (10.6%) | 10.60 ± 0.17 | 9.40 ± 0.25 | 1.20* (11.3%) | 30% | | RC rat-only weight excluding substances with specific mechanisms of toxicity ⁹ | 10.82 ± 0.12 | 9.53 ± 0.20 | 1.29* (11.9%) | 10.60 ± 0.17 | 9.17 ± 0.22 | 1.43* (13.5%) | 38% | ¹Numbers are mean numbers of animals used and standard errors for 2000 ATC simulations each for 70 substances for the 3T3 NRU test method and 71 substances for the NHK NRU test method. No IC₅₀ was obtained for carbon tetrachloride in either assay or for methanol in the 3T3 NRU. Limit dose = 2000 mg/kg ²OECD (2001d). ³Default starting dose = 300 mg/kg. ⁴Starting dose was one fixed dose lower than NRU-predicted LD₅₀ calculated using the geometric mean of laboratory mean IC₅₀ values in the regression specified. ⁵Difference between mean animal use with default starting dose and mean animal use with NRU-based LD₅₀. Percentage difference is shown in parentheses. Differences marked by * were statistically significant (i.e., p < 0.05) using a one-sided Wilcoxon signed rank test. ⁶Proportion of substances for which the GHS acute oral toxicity category (UN 2005) predicted by the *in vitro* NRU test methods matched the *in vivo* category (from **Tables 6-4** to **6-6**). $^{^{7}}$ log LD₅₀ (mmol/kg) = 0.435 log IC₅₀ (mM) + 0.625. $^{^{8}}$ log LD₅₀ (mg/kg) = 0.372 log IC₅₀ (µg/mL) + 2.024. $^{^{9}}$ log LD₅₀ (mg/kg) = 0.357 log IC₅₀ (µg/mL) + 2.194. Table 6 Animal Savings¹ for the ATC² by GHS Toxicity Category³ Using Starting Doses Based on the 3T3 and NHK NRU Test Methods with the RC Millimole Regression⁴ – All Chemicals | | | Do | se-Response Slo | pe = 2 | Dose | Dose-Response Slope = 8.3 | | | | |---|--------------------------------------|---|---|----------------------------|--|---|-------------------------------|---------------|--| | Toxicity Category ³ | Number of
Reference
Substances | With Default
Starting
Dose ⁵ | With NRU-
Based
Starting
Dose ⁶ | Animals Saved ⁷ | With Default
Starting Dose ⁵ | With NRU-
Based
Starting
Dose ⁶ | Animals
Saved ⁷ | Accuracy
8 | | | | | | | 3T3 NRU T | Test Method | | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 12 | 9.51 ± 0.12 | 7.98 ± 0.68 | 1.63* (17.1%) | 9.10 ± 0.07 | 7.44 ± 0.68 | 1.66* (18.3%) | 0% | | | $5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 11.95 ± 0.15 | 10.36 ± 0.71 | 1.58* (13.3%) | 12.02 ± 0.07 | 10.38 ± 0.59 | 1.64* (13.7%) | 17% | | | $50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 10.76 ± 0.23 | 10.37 ± 0.20 | 0.39 (3.6%) | 9.70 ± 0.32 | 9.53 ± 0.17 | 0.17 (1.8%) | 67% | | | $300 < LD_{50} \le 2000 \text{ mg/kg}$ | 12 | 9.86 ± 0.09 | 10.10 ± 0.15 | -0.24 (-2.5%) | 9.37 ± 0.14 | 9.80 ± 0.26 | -0.43* (-4.6%) | 100% | | | $2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 11.18 ± 0.08 | 11.02 ± 0.13 | 0.16 (1.4%) | 11.90 ± 0.04 | 11.55 ± 0.20 | 0.35* (2.9%) | 0% | | | LD ₅₀ > 5000 mg/kg | 11 | 11.89 ± 0.03 | 9.97 ± 0.91 | 1.92 (16.2%) | 12.00 ± 0.00 | 9.95 ± 0.97 | 2.05 (17.1%) | 10% | | | | | | | NHK NRU ' | Test Method | | | | | | LD ₅₀ ≤ 5 mg/kg | 12 | 9.52 ± 0.12 | 8.50 ± 0.71 | 1.02 (10.7%) | 9.10 ± 0.07 | 8.08 ± 0.66 | 1.02 (11.2%) | 0% | | | $5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 12.00 ± 0.15 | 9.09 ± 0.42 | 2.86* (23.9%) | 12.02 ± 0.07 | 9.09 ± 0.19 | 2.93* (24.4%) | 50% | | | $50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 10.78 ± 0.24 | 10.55 ± 0.25 | 0.23 (2.1%) | 9.71 ± 0.32 | 9.82 ± 0.41 | -0.11 (-1.1%) | 50% | | | $300 < LD_{50} \le 2000 \text{ mg/kg}$ | 12 | 9.86 ± 0.09 | 9.831 ± 0.13 | 0.02 (0.2%) | 9.38 ± 0.14 | 9.43 ± 0.18 | -0.06 (-0.6%) | 100% | | | $2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 11.19 ± 0.09 | 10.81 ± 0.27 | 0.38* (3.4%) | 11.90 ± 0.04 | 11.17 ± 0.51 | 0.73 (6.2%) | 9% | | | LD ₅₀ > 5000 mg/kg | 12 | 11.91 ± 0.02 | 10.22 ± 1.01 | 1.69 (14.2%) | 12.00 ± 0.00 | 10.19 ± 1.01 | 1.81 (15.1%) | 0% | | ¹Numbers are mean number of animals used and standard errors for 2000 simulations for each substance with a limit dose of 2000 mg/kg. Results are provided for 70 substances in the 3T3 NRU test method and 71 substances in the NHK NRU test method categorized using the initial LD₅₀ values from **Table 3-2**. No IC₅₀ was obtained for carbon tetrachloride in either assay or for methanol in the 3T3 NRU. Although the simulations used whole animals, averaging the results produced fractional numbers of animals. Page 6 of 9 ²OECD (2001d). ³GHS-Globally Harmonized System of Classification and Labelling of Chemicals with LD₅₀ in mg/kg (UN 2005). $^{^{4}}$ RC millimole regression is log LD₅₀ (mmol/kg) = 0.435 log IC₅₀ (mM) + 0.625. ⁵Default starting dose = 300 mg/kg. ⁶Starting dose was the next fixed dose lower than the predicted LD₅₀ from using the NRU IC₅₀ in the RC millimole regression. ⁷Difference between mean animal use with default starting dose and mean animal use with NRU-based starting dose. Statistically significant differences (i.e., p < 0.05) by a one-sided Wilcoxon signed rank test are noted by *. Percentage difference is shown in parentheses. ⁸Proportion of substances for which the GHS acute oral toxicity category (UN 2005) predicted by the *in vitro* NRU test methods matched the *in vivo* category (from **Table 6-4**). Table 7 Animal Savings¹ for the ATC² by GHS Toxicity Category³ Using Starting Doses Based on the 3T3 and NHK NRU Test Methods with the RC Rat-Only Weight Regression⁴ – All Chemicals | | | Do | Dose-Response Slope = 2 | | | Dose-Response Slope = 8.3 | | | | |---|--------------------------------------|--|--|-------------------------------|--|--|-------------------------------|-----------------------|--| | Toxicity Category ³ | Number of
Reference
Substances | With
Default
Starting
Dose ⁵ | With NRU-
Based
Starting Dose ⁶ | Animals
Saved ⁷ | With
Default
Starting
Dose ⁵ | With NRU-
Based
Starting Dose ⁶ | Animals
Saved ⁷ | Accuracy ⁸ | | | | | | | 3T3 NRU T | est Method | | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 7 | 9.51 ± 0.12 | 7.94 ± 0.63 | 1.58* (16.6%) | 9.10 ± 0.07 | 7.50 ± 0.62 | 1.60* (17.6%) | 0% | | | $> 5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 11.95 ± 0.15 | 9.97 ± 0.54 | 1.98* (16.6%) | 12.02 ± 0.07 | 9.97 ± 0.41 | 2.04* (17.0%) | 14% | | | $> 50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 10.76 ± 0.23 | 10.30 ± 0.19 | 0.47 (4.3%) | 9.70 ± 0.32 | 9.44 ± 0.23 | 0.27 (2.8%) | 80% | | | $> 300 < LD_{50} \le 2000 \text{ mg/kg}$ | 16 | 9.86 ± 0.09 | 10.14 ± 0.20 | -0.28 (-2.8%) | 9.37 ± 0.14 | 9.89 ± 0.36 | -0.52 (-5.6%) | 78% | | | $> 2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 11.18 ± 0.08 | 9.79 ± 0.47 | 1.39* (12.4%) | 11.90 ± 0.04 | 9.34 ± 0.82 | 2.56* (21.5%) | 44% | | | > 5000 mg/kg | 12 | 11.89 ± 0.03 | 9.01 ± 0.93 | 2.88* (24.2%) | 12.00 ± 0.00 | 8.93 ± 0.99 | 3.07* (25.6%) | 0% | | | | | | | NHK NRU | Test Method | | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 7 | 9.52 ± 0.12 | 8.29 ± 0.61 | 1.23* (13.0%) | 9.10 ± 0.07 | 7.86 ± 0.56 | 1.23* (13.6%) | 0% | | | $> 5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 11.95 ± 0.15 | 9.26 ± 0.43 | 2.69* (22.5%) | 12.02 ± 0.07 | 9.28 ± 0.29 | 2.74* (22.8%) | 14% | | | $> 50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 10.78 ± 0.24 | 10.51 ± 0.25 | 0.27 (2.5%) | 9.71 ± 0.32 | 9.81 ± 0.42 | -0.10 (-1.1%) | 60% | | | $> 300 < LD_{50} \le 2000 \text{ mg/kg}$ | 16 | 9.86 ± 0.09 | 9.95 ± 0.14 | -0.10 (-1.0%) | 9.38 ± 0.14 | 9.55 ± 0.24 | -0.17 (-1.8%) | 89% | | | $> 2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 11.19 ± 0.09 | 10.45 ± 0.40 | 0.73 (6.6%) | 11.90 ± 0.04 | 10.55 ± 0.69 | 1.35 (11.3%) | 11% | | | $LD_{50} > 5000 \text{ mg/kg}$ | 13 | 11.91 ± 0.02 | 9.47 ± 0.93 | 2.44 (20.5%) | 12.00 ± 0.00 | 9.38 ± 0.98 | 2.62* (21.8%) | 8% | | ¹Numbers are mean number of animals used and standard errors for 2000 simulations for each substance with a limit dose of 2000 mg/kg. Although the simulations used whole animals, averaging the results produced fractional numbers of animals. Results are provided for 70 substances in the 3T3 NRU test method and 71 substances in the NHK NRU test method categorized using the reference LD₅₀ values from **Table 4-2**. No IC₅₀ was obtained for carbon tetrachloride in either assay or for methanol in the 3T3 NRU. ²OECD (2001d). ³GHS-Globally Harmonized System of Classification and Labelling of Chemicals with LD₅₀ in mg/kg (UN 2005). ⁴From **Table 6-2**; $\log LD_{50}$ (mg/kg) = 0.372 $\log IC_{50}$ (μ g/mL) + 2.024 ⁵Default starting dose = 300 mg/kg. ⁶Starting dose was one fixed dose lower than the NRU-predicted LD₅₀ calculated using the NRU IC₅₀ in the RC rat-only weight regression. ⁷Difference between mean animal use with default starting dose and mean animal use with NRU-based LD₅₀. Differences marked by * were statistically significant (i.e., p < 0.05) by a one-sided Wilcoxon signed rank test. Percentage difference is shown in parentheses. ⁸Proportion of substances for which the GHS acute oral toxicity category (UN 2005) predicted by the *in vitro* NRU test methods matched the *in vivo* category (from **Table 6-5**). Table 8 Animal Savings¹ for the ATC² By GHS Toxicity Category³ Using Starting Doses Based on the 3T3 and NHK NRU Test Methods with the RC Rat-Only Weight Regression Excluding Substances with Specific Mechanisms of Toxicity⁴- All Chemicals | | | Dos | Dose-Response Slope = 2 Dose-Response Slope = 8.3 | | | | | | |---|--------------------------------------|--|---|-------------------------------|-----------------------------------|--|-------------------------------|-----------------------| | Toxicity Category ³ | Number of
Reference
Substances | With
Default
Starting
Dose ⁵ | With NRU-
Based
Starting
Dose ⁶ | Animals
Saved ⁷ | With Default
Starting
Dose⁵ | With NRU-
Based
Starting Dose ⁶ | Animals
Saved ⁷ | Accuracy ⁸ | | | | | | 3T3 NRU | Test Method | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 7 | 9.51 ± 0.12 | 8.30 ± 0.61 | 1.22 (12.8%) | 9.10 ± 0.07 | 7.85 ± 0.61 | 1.25 (13.7%) | 0% | | $> 5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 11.95 ± 0.15 | 10.50 ± 0.54 | 1.45* (12.1%) | 12.02 ± 0.07 | 10.51 ± 0.45 | 1.51* (12.6%) | 14% | | $> 50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 10.76 ± 0.23 | 10.37 ± 0.22 | 0.39 (3.6%) | 9.70 ± 0.32 | 9.48 ± 0.25 | 0.22 (2.3%) | 80% | | $> 300 < LD_{50} \le 2000 \text{ mg/kg}$ | 16 | 9.86 ± 0.09 | 9.87 ± 0.10 | -0.02 (-0.2%) | 9.37 ± 0.14 | 9.45 ± 0.17 | -0.08 (-0.9%) | 78% | | $> 2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 11.18 ± 0.08 | 9.50 ± 0.47 | 1.67* (15.0%) | 11.90 ± 0.04 | 8.83 ± 0.82 | 3.07* (25.8%) | 67% | | > 5000 mg/kg | 12 | 11.89 ± 0.03 | 8.19 ± 0.78 | 3.70* (31.1%) | 12.00 ± 0.00 | 8.02 ± 0.82 | 3.98* (33.1%) | 25% | | | | | | NHK NRU | Test Method | | | | | $LD_{50} \le 5 \text{ mg/kg}$ | 7 | 9.52 ± 0.12 | 8.80 ± 0.45 | 0.72 (7.6%) | 9.10 ± 0.07 | 8.38 ± 0.40 | 0.72 (7.9%) | 0% | | $> 5 < LD_{50} \le 50 \text{ mg/kg}$ | 12 | 11.95 ± 0.15 | 9.69 ± 0.53 | 2.26* (18.9%) | 12.02 ± 0.07 | 9.70 ± 0.43 | 2.32* (19.3%) | 14% | | $> 50 < LD_{50} \le 300 \text{ mg/kg}$ | 12 | 10.78 ± 0.24 | 10.48 ± 0.23 | 0.30 (2.8%) | 9.71 ± 0.32 | 9.74 ± 0.35 | -0.03 (-0.3%) | 60% | | $> 300 < LD_{50} \le 2000 \text{ mg/kg}$ | 16 | 9.86 ± 0.09 | 9.78 ± 0.10 | 0.08 (0.8%) | 9.38 ± 0.14 | 9.33 ± 0.14 | 0.04 (0.5%) | 89% | | $> 2000 < LD_{50} \le 5000 \text{ mg/kg}$ | 11 | 11.19 ± 0.09 | 9.96 ± 0.45 | 1.23* (11.0%) | 11.90 ± 0.04 | 9.62 ± 0.80 | 2.28* (19.2%) | 44% | | LD ₅₀ > 5000 mg/kg | 13 | 11.91 ± 0.02 | 8.44 ± 0.76 | 3.47* (29.2%) | 12.00 ± 0.00 | 8.30 ± 0.81 | 3.70* (30.8%) | 15% | ¹Numbers are mean number of animals used and standard errors for 2000 simulations for each substance with a limit dose of 2000 mg/kg. Although the simulations used whole animals, averaging the results produced fractional numbers of animals. Results are provided for 70 substances in the 3T3 NRU test method and 71 substances in the NHK NRU test method categorized using the reference LD₅₀ values from **Table 4-2**. No IC₅₀ was obtained for carbon tetrachloride in either assay or for methanol in the 3T3 NRU. ²OECD (2001d). ³GHS-Globally Harmonized System of Classification and Labelling of Chemicals with LD₅₀ in mg/kg (UN 2005). ⁴From **Table 6-2**; $\log LD_{50}$ (mg/kg) = 0.357 $\log IC_{50}$ (µg/mL) + 2.194. ⁵Default starting dose = 300 mg/kg. $^{^6}$ Starting dose was one fixed dose lower than the NRU-predicted LD₅₀ calculated using the NRU IC₅₀ in the RC rat-only weight regression excluding substances with specific mechanisms of toxicity. ⁷Difference between mean animal use with default starting dose and mean animal use with NRU-based LD₅₀. Statistically significant differences (i.e., p < 0.05) by a one-sided Wilcoxon signed rank test are noted by *. Percentage difference is shown in parentheses. Table 9 Animal Deaths¹ for the ATC² Using Starting Doses Based on the 3T3 and NHK NRU Test Methods – All Chemicals | Assay/ Regression | Defai | ult Starting l | Dose ³ | NRU-Based Starting Dose ⁴ | | | | | |--|---------------------------|----------------|-------------------|--------------------------------------|------|----------|--|--| | | Used | Dead | % Deaths | Used | Dead | % Deaths | | | | 3T3 NRU | | | Dose-Respons | se Slope = 2 | | | | | | RC millimole ⁵ | 10.79 | 4.13 | 38.3% | 9.93 | 3.52 | 35.4% | | | | RC rat-only ⁶ | 10.79 | 4.13 | 38.3% | 9.53 | 3.47 | 36.4% | | | | RC rat-only excluding substances with specific mechanisms of toxicity ⁷ | 10.79 | 4.13 | 38.3% | 9.46 | 3.63 | 38.3% | | | | | |] | Dose-Response | Slope = 8.3 | | | | | | RC millimole ⁵ | 10.57 | 3.67 | 34.7% | 9.73 | 3.11 | 31.9% | | | | RC rat-only ⁶ | 10.57 | 3.67 | 34.7% | 9.17 | 3.05 | 33.3% | | | | RC rat-only excluding substances with specific mechanisms of toxicity ⁷ | 10.57 | 3.67 | 34.7% | 9.01 | 3.20 | 35.5% | | | | NHK NRU | | • | Dose-Respons | e Slope = 2 | | | | | | RC millimole ⁵ | 10.82 | 4.07 | 37.7% | 9.85 | 3.41 | 34.6% | | | | RC rat-only ⁶ | 10.82 | 4.07 | 37.7% | 9.67 | 3.39 | 35.1% | | | | RC rat-only excluding substances specific mechanisms of toxicity ⁷ | 10.82 | 4.07 | 37.7% | 9.53 | 3.55 | 37.2% | | | | | Dose-Response Slope = 8.3 | | | | | | | | | RC millimole ⁵ | 10.60 | 3.63 | 34.2% | 9.62 | 2.99 | 31.1% | | | | RC rat-only ⁶ | 10.60 | 3.63 | 34.2% | 9.40 | 2.98 | 31.7% | | | | RC rat-only excluding substances with specific mechanisms of toxicity ⁷ | 10.60 | 3.63 | 34.2% | 9.17 | 3.13 | 34.1% | | | Numbers are mean numbers of animals used for 2000 simulations for each substance (70 substances in the 3T3 NRU test method and 71 substances in the NHK NRU test method). No IC₅₀ was obtained for carbon tetrachloride in either assay or for methanol in the 3T3 NRU. Although the simulations used whole animals, averaging the results produced fractional numbers of animals. Upper limit dose = 2000 mg/kg. 2OECD (2001d). Unfortunately we do not have the numbers on animal deaths for the UDP at this time. ³Default starting dose = 300 mg/kg. ⁴Starting dose was one fixed dose lower than the NRU-predicted LD₅₀. ⁵log LD₅₀ (mmol/kg) = 0.435 log IC₅₀ (mM) + 0.625. ⁶log LD₅₀ (mg/kg) = 0.372 log IC₅₀ (μ g/mL) + 2.024. $^{^{7}\}log LD_{50} \text{ (mmol/kg)} = 0.357 \log IC_{50} \text{ (mM)} + 2.194.$